

Language Modeling

Natalie Parde, Ph.D. Department of Computer Science University of Illinois at Chicago

CS 521: Statistical Natural Language Processing Spring 2020

Many slides adapted from Jurafsky and Martin (https://web.stanford.edu/~jurafsky/slp3/).

What is language modeling?

• The process of building statistical models that predict the likelihood of different word or character sequences in a language.

What is language modeling?

• The process of building statistical models that predict the likelihood of different word or character sequences in a language.

Why is language modeling useful?

- Many reasons!
- Helps in tasks that require words to be identified from noisy, ambiguous input
 - Speech recognition
 - Autocorrect
- Helps in tasks that require sequences of text to be generated
 - Machine translation
 - Image captioning

Language models come in many forms.

- Simple (today's focus):
 - N-gram language models
- More sophisticated (later this semester):
 - Neural language models

N-Gram Language Models

- Goal: Predict P(word|history)
 - P("spring" | "I'm so excited to be taking CS 521 this")

How do we predict these probabilities?

- One method: Estimate it from frequency counts
 - Take a large corpus
 - Count the number of times you see the history
 - Count the number of times the specified word follows the history

P("spring" | "I'm so excited to be taking CS 521 this") = C("I'm so excited to be taking CS 521 this spring") / C("I'm so excited to be taking CS 521 this")

However, there are a few problems with this method.

- What if our word (or our history) contains uncommon words?
- What if we have limited computing resources?

We need a better way to estimate P(word|history)!

- The solution: Instead of computing the probability of a word given its entire history, approximate the history using the most recent few words.
- These sequences of words are referred to as ngrams, where n is the length of the recent words + the current word

Special N-Grams

- Most higher-order (n>3) ngrams are simply referred to using the value of n
 - 4-gram
 - 5-gram
- However, lower-order ngrams are often referred to using special terms:
 - Unigram (1-gram)
 - Bigram (2-gram)
 - Trigram (3-gram)

N-gram models follow the Markov assumption.

- We can predict the probability of some future unit without looking too far into the past
 - **Bigram language model:** Probability of a word depends only on the previous word
 - Trigram language model: Probability of a word depends only on the two previous words
 - N-gram language model: Probability of a word depends only on the *n*-1 previous words

More formally....

- $P(w_n | w_1^{n-1}) \approx P(w_n | w_{n-N+1}^{n-1})$
- We can then multiply these individual word probabilities together to get the probability of a word sequence
 - $P(w_1^n) \approx \prod_{k=1}^n P(w_k | w_{k-N+1}^{k-1})$

P("Winter break is already over?")

P("over?" | "already") * P("already" | "is") * P("is" | "break") * P("break" | "Winter")

To compute n-gram probabilities, maximum likelihood estimation is often used.

- Maximum Likelihood Estimation (MLE):
 - Get the requisite n-gram frequency counts from a corpus
 - Normalize them to a 0-1 range
 - P(w_n | w_{n-1}) = # of occurrences of the bigram w_{n-1} w_n / # of occurrences of the unigram w_{n-1}

I am cold.
You are cold.
Everyone is cold.
This is Chicago.

Bigram	Frequency
<s> </s>	1
l am	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Bigram	Freq.
<s> </s>	1
l am	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Unigram	Freq.
<s></s>	4
I	1
am	1
cold.	3
Chicago.	1
	4

Bigram	Freq.
<s> </s>	1
lam	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Unigram	Freq.
<s></s>	4
I	1
am	1
cold.	3
Chicago.	1
	4

P("I" | "<s>") = C("<s>I") / C("<s>") = 1 / 4 = 0.25

Bigram	Freq.
<s> </s>	1
lam	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Unigram	Freq.
<s></s>	4
I	1
am	1
cold.	3
Chicago.	1
	4

P("I" | "<s>") = C("<s>I") / C("<s>") = 1 / 4 = 0.25

P((</s>) | (cold.)) = C((cold. </s>) / C((cold.)) = 3 / 3 = 1.00

Bigram	Freq.
<s> </s>	1
lam	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Unigram	Freq.
<s></s>	4
I	1
am	1
cold.	3
Chicago.	1
	4

P("I" | "<s>") = C("<s>I") / C("<s>") = 1 / 4 = 0.25

P("</s>" | "cold.") = C("cold. </s>") / C("cold.") = 3 / 3 = 1.00

What do bigram counts from larger corpora look like?

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

What do bigram probabilities from larger corpora look like?

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

What can we learn from n-gram statistics?

- Syntactic information
 - "to" is usually followed by a verb
 - Nouns often follow verbs
- Task information
 - Virtual assistants are likely to hear the word "I"
- Cultural/sociological information
 - People like some cuisines more than others

What type of n-gram is best?

- In general, the highest-order value of n that your data can handle!
- Higher order \rightarrow sparser
- Note: Because n-gram probabilities tend to be small, it is most common to perform operations in log space
 - Multiplying in linear space = adding in log space
 - Less likely to run into numerical underflow when representing sequences

- Two types of evaluation paradigms:
 - Extrinsic
 - Intrinsic
- Extrinsic evaluation: Embed the language model in an application, and compute changes in task performance
- Intrinsic evaluation: Measure the quality of the model, independent of any application

Evaluating Language Models

- Intrinsic evaluation metric for language models
- Perplexity (PP) of a language model on a test set is the inverse probability of the test set, normalized by the number of words in the test set

Natalie Parde - UIC CS 52

12454.56

EAT

Perplexity

2+3+ 4.31447

More formally....

•
$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2...w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1...w_{i-1})}}$$

- Where *W* is a test set containing words *w*₁, *w*₂, ..., *w*_n
- Higher conditional probability of a word sequence → lower perplexity
 - Minimizing perplexity = maximizing test set probability according to the language model

Training Set

Word	Frequency
CS	10
521	10
Statistical	10
Natural	10
Language	10
Processing	10
University	10
of	10
Illinois	10
Chicago	10

Word	Frequency
CS	10
521	10
Statistical	10
Natural	10
Language	10
Processing	10
University	10
of	10
Illinois	10
Chicago	10

Test String

CS 521 Statistical Natural Language Processing University of Illinois Chicago

Word	Frequency
CS	10
521	10
Statistical	10
Natural	10
Language	10
Processing	10
University	10
of	10
Illinois	10
Chicago	10

Test String

CS 521 Statistical Natural Language Processing University of Illinois Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

P

Test String

CS 521 Statistical Natural Language Processing University of Illinois Chicago

$$P(W) = \sqrt[n]{\frac{1}{P(w_1 w_2 \dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i | w_1 \dots w_{i-1})}}$$

P("CS") = C("CS") / C(<all unigrams>) = 10/100 = 0.1

Test String

CS 521 Statistical Natural Language Processing University of Illinois Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

P("CS") = C("CS") / C(<all unigrams>) = 10/100 = 0.1 P("521") = C("521") / C(<all unigrams>) = 10/100 = 0.1

Word	Frequency	P(Word)
CS	10	0.1
521	10	0.1
Statistical	10	0.1
Natural	10	0.1
Language	10	0.1
Processing	10	0.1
University	10	0.1
of	10	0.1
Illinois	10	0.1
Chicago	10	0.1

Test String

CS 521 Statistical Natural Language Processing University of Illinois Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

Word	Frequency	P(Word)
CS	10	0.1
521	10	0.1
Statistical	10	0.1
Natural	10	0.1
Language	10	0.1
Processing	10	0.1
University	10	0.1
of	10	0.1
Illinois	10	0.1
Chicago	10	0.1

Test String

CS 521 Statistical Natural Language Processing University of Illinois Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

PP("CS 521 Statistical Natural Language Processing University of Illinois Chicago")

Word	Frequency	P(Word)
CS	1	
521	1	
Statistical	1	
Natural	1	
Language	1	
Processing	1	
University	1	
of	1	
Illinois	1	
Chicago	91	

Test String

Illinois Chicago Chicago Chicago Chicago Chicago Chicago Chicago Chicago Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

Word	Frequency	P(Word)
CS	1	0.01
521	1	0.01
Statistical	1	0.01
Natural	1	0.01
Language	1	0.01
Processing	1	0.01
University	1	0.01
of	1	0.01
Illinois	1	0.01
Chicago	91	0.91

Test String

Illinois Chicago Chicago Chicago Chicago Chicago Chicago Chicago Chicago Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$
Example: Perplexity

Word	Frequency	P(Word)
CS	1	0.01
521	1	0.01
Statistical	1	0.01
Natural	1	0.01
Language	1	0.01
Processing	1	0.01
University	1	0.01
of	1	0.01
Illinois	1	0.01
Chicago	91	0.91

Test String

Illinois Chicago Chicago Chicago Chicago Chicago Chicago Chicago Chicago Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

PP("CS 521 Statistical Natural Language Processing University of Illinois Chicago")

Perplexity can be used to compare different language models.

Which language model is best?

- Model A: Perplexity = 962
- Model B: Perplexity = 170
- Model C: Perplexity = 109

Perplexity can be used to compare different language models.

Which language model is best?

- Model A: Perplexity = 962
- Model B: Perplexity = 170

• Model C: Perplexity = 109

A cautionary note....

- Improvements in perplexity do not guarantee improvements in task performance!
- However, the two are often correlated (and perplexity is quicker and easier to check)
- Strong language model evaluations also include an extrinsic evaluation component

Generalization and Sparsity

- Probabilities in n-gram models often encode specific characteristics of the training corpus
 - These characteristics are encoded more strongly in higher-order n-grams
- We can see this when generating text from different n-gram models
 - Select an n-gram randomly from the distribution of all n-grams in the training corpus
 - Randomly select an n-gram from the same distribution, dependent on the previous n-gram
 - In a bigram model, if the previous bigram was "CS 521" then the next bigram has to start with "521"
 - Repeat until the sentence-final token is reached

Unigram

- To him swallowed confess hear both. Of save on trail for are ay device and rote life have
- Hill he late speaks; or! a more to leg less first you enter

Bigram

- Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
- What means, sir. I confess she? then all sorts, he is trim, captain.

Trigram

- Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
- This shall forbid it should be branded, if renown made it empty.

4-gram

- King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;
- It cannot be but so.

Unigram

• To him swallowed confess hear both. Of save on trail for are ay device and rote life have

No coherence between words

• Hill he late speaks; or! a more to leg less first you enter

Bigram

- Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
- What means, sir. I confess she? then all sorts, he is trim, captain.

Trigram

- Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
- This shall forbid it should be branded, if renown made it empty.

4-gram

- King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;
- It cannot be but so.

Why did we end up with a direct Shakespearean quote?

- The corpus of all Shakespearean text is relatively small
 - N=884,647
 - V=29,066
- This means the higher-order n-gram matrices are *very* sparse!
- Only five possible continuations (*that*, *I*, *he*, *thou*, and *so*) for the sequence *It cannot be but*

Sparse n-gram models assume a probability of zero for a large number of n-grams.

Why is this problematic?

- We're underestimating the probability of lots of potential n-grams
- If the probability of any n-gram in the test set is 0, the probability of the entire test set will be 0
 - Perplexity is the inverse probability of the test set
 - It's impossible to divide by 0
 - We can't compute perplexity!

Handling Unknown Words

- Out of vocabulary (OOV)
- Model potential OOV words by adding a pseudoword, <UNK>
- How to assign a probability to <UNK>?
 - Option A:
 - Choose a fixed word list
 - Convert any words not in that list to <UNK>
 - Estimate the probabilities for <UNK> like any other word
 - Option B:
 - Replace all words occurring fewer than n times with <UNK>
 - Estimate the probabilities for <UNK> like any other word
- Beware of "gaming" perplexity!!
 - If you choose a small vocabulary and thus assign <UNK> a high probability, your language model will probably have lower perplexity (make sure to only compare to other language models using the exact same vocabulary)

Handling Words in Unseen Contexts

- Smoothing: Taking a bit of the probability mass from more frequent events and giving it to unseen events.
 - Sometimes also called "discounting"
- Many different smoothing techniques:
 - Laplace (add-one)
 - Add-k
 - Stupid backoff
 - Kneser-Ney

Bigram	Frequency
CS 421	8
CS 590	5
CS 594	2
CS 521	0 😢

Bigram	Frequency
CS 421	7
CS 590	5
CS 594	2
CS 521	1 🖌 🕰

Laplace Smoothing

- Add one to all n-gram counts before they are normalized into probabilities
- Not the highest-performing technique for language modeling, but a useful baseline
 - Practical method for other text classification tasks

•
$$P(w_i) = \frac{c_i}{N} \rightarrow P_{\text{Laplace}}(w_i) = \frac{c_i+1}{N+V}$$

	ſ					7
		Unigram	Frequency	Bigram	Frequency	
		Chicago	4	Chicago is	2	
Corpus Statistics:	\prec	is	8	is cold	4	
		cold	6	is hot	0	
		hot	0			

This results in a sharp change in probabilities!

Bigram	Probability
Chicago is	$\frac{2}{4} = 0.50$
is cold	$\frac{4}{8} = 0.50$
is hot	$\frac{0}{8} = 0.00$
Bigram	Probability
Bigram Chicago is	Probability $\frac{3}{8} = 0.38$
Bigram Chicago is is cold	Probability $\frac{3}{8} = 0.38$ $\frac{5}{12} = 0.42$

Add-K Smoothing

- Moves a bit less of the probability mass from seen to unseen events
- Rather than adding one to each count, add a fractional count
 - 0.5
 - 0.05
 - 0.01
- The value *k* can be optimized on a validation set

•
$$P(w_i) = \frac{c_i}{N} \rightarrow P_{\text{Add}-K}(w_i) = \frac{c_i + k}{N + kV}$$

•
$$P(w_n|w_{n-1}) = \frac{c(w_{n-1}w_n)}{c(w_{n-1})} \to P_{\text{Add}-K}(w_n|w_{n-1}) = \frac{c(w_{n-1}w_n)+k}{c(w_{n-1})+kV}$$

Add-K smoothing is useful for some tasks, but still tends to be suboptimal for language modeling.

- Other smoothing techniques?
 - Backoff: Use the specified n-gram size to estimate probability if its count is greater than 0; otherwise, *backoff* to a lower-order n-gram
 - Interpolation: Mix the probability estimates from multiple n-gram sizes, weighing and combining the n-gram counts

Interpolation

- Linear interpolation
 - $P'(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)$ • Where $\sum_i \lambda_i = 1$
- Conditional interpolation

Context-conditioned weights

Backoff

- If the n-gram we need has zero counts, approximate it by backing off to the (n-1)-gram
- Continue backing off until we reach a size that has non-zero counts
- Just like with smoothing, some probability mass from higherorder n-grams needs to be redistributed to lower-order ngrams

Katz Backoff

- Incorporate a function α to distribute probability mass to lower-order n-grams
- Rely on a discounted probability P* if the n-gram has non-zero counts
- Otherwise, recursively back off to the Katz probability for the (n-1)-gram

•
$$P_{BO}(w_n | w_{n-N+1}^{n-1}) = \begin{cases} P^*(w_n | w_{n-N+1}^{n-1}), & \text{if } c(w_{n-N+1}^n) > 0\\ \alpha(w_{n-N+1}^{n-1}) P_{BO}(w_n | w_{n-N+2}^{n-1}), & \text{otherwise} \end{cases}$$

- One of the most commonly used and best-performing n-gram smoothing methods
- Incorporates absolute discounting
 - Subtracts an absolute discount *d* from each count
- Simple absolute discounting:

•
$$P_{\text{AbsoluteDiscounting}}(w_i|w_{i-1}) = \frac{C(w_{i-1}w_i)-d}{\sum_{v}C(w_{i-1}v)} + \lambda(w_{i-1})P(w_i)$$

- One of the most commonly used and best-performing n-gram smoothing methods
- Incorporates absolute discounting
 - Subtracts an absolute discount *d* from each count
- Simple absolute discounting:

•
$$P_{\text{AbsoluteDiscounting}}(w_i|w_{i-1}) = \frac{C(w_{i-1}w_i)-d}{\sum_{\nu} C(w_{i-1}\nu)} + \lambda(w_{i-1})P(w_i)$$

 Kneser-Ney smoothing comes up with a more sophisticated way to handle the lower-order n-gram distribution

- tall nonfat decaf peppermint _
 - "york" is a more frequent unigram than "mocha" (7.4 billion results vs. 135 million results on Google), but it's mainly frequent when it follows the word "new"
- Creates a unigram model that estimates the probability of seeing the word w as a novel continuation, in a new unseen context
 - Based on the number of different contexts in which *w* has already appeared

•
$$P_{\text{Continuation}}(w) = \frac{|\{v:C(vw)>0\}|}{|\{(u',w'):C(u'w')>0\}|}$$

$$P_{\rm KN}(w_i|w_{i-n+1}^{i-1}) = \frac{\max(c_{\rm KN}(w_{i-n+1}^i) - d, 0)}{\sum_{\nu} c_{\rm KN}(w_{i-n+1}^{i-1}\nu)} + \lambda(w_{i-n+1}^{i-1})P_{\rm KN}(w_i|w_{i-n+2}^{i-1})$$

$$P_{\mathrm{KN}}(w_{i}|w_{i-n+1}^{i-1}) = \frac{\max(c_{\mathrm{KN}}(w_{i-n+1}^{i}) - d, 0)}{\sum_{v} c_{\mathrm{KN}}(w_{i-n+1}^{i-1}v)} + \lambda(w_{i-n+1}^{i-1})P_{\mathrm{KN}}(w_{i}|w_{i-n+2}^{i-1})$$
Normalizing constant to distribute the probability mass that's been discounted
$$\lambda(w_{i-1}) = \frac{d}{\sum_{v} C(w_{i-1}v)} |\{w : c(w_{i-1}w) > 0\}|$$

Normalizing constant to distribute the probability mass that's been discounted

 $\max(c_{KN}(w_{i-n+1}^{l})$

 $C_{KN}(w_{i-n+1}^{i-1}v)$

Regular count for the highest-order n-gram, or the number of unique single word contexts for lower-order n-grams

 $P_{\rm KN}(w_i|w_{i-n+1}^{i-1}$

) - d, 0)

+ $\lambda(w_{i-n+1}^{i-1})P_{KN}(w_i|w_{i-n+2}^{i-1})$
Kneser-Ney Smoothing

 $P_{\rm KN}(w_i|w_{i-n+1}^{i-1})$

Normalizing constant to distribute the probability mass that's been discounted

Regular count for the highest-order n-gram, or the number of unique single word contexts for lower-order n-grams

At termination of recursion, unigrams are interpolated with the uniform distribution (ε = empty string) $P_{KN}(w) = \frac{\max(c_{KN}(w) - d, 0)}{\sum_{w'} c_{KN}(w')} + \lambda(\varepsilon) \frac{1}{V}$

Natalie Parde - UIC CS 521

 $= \frac{\max(c_{KN}(w_{i-n+1}^{i}) - d, 0)}{\sum_{\nu} c_{KN}(w_{i-n+1}^{i-1}\nu)} + \lambda(w_{i-n+1}^{i-1})P_{KN}(w_{i}|w_{i-n+2}^{i-1})$

Stupid Backoff

- Gives up the idea of trying to make the language model a true probability distribution 😌
- No discounting of higher-order probabilities
- If a higher-order n-gram has a zero count, simply backoff to a lowerorder n-gram, weighted by a fixed weight

•
$$S(w_i|w_{i-k+1}^{i-1}) = \begin{cases} \frac{c(w_{i-k+1}^i)}{c(w_{i-k+1}^{i-1})} & \text{if } c(w_{i-k+1}^i) > 0\\ \lambda S(w_i|w_{i-k+2}^{i-1}) & \text{otherwise} \end{cases}$$

• Terminates in the unigram, which has the probability:

•
$$S(w) = \frac{c(w)}{N}$$

Stupid Backoff

• $S(w) = \frac{c(w)}{w}$

- Gives up the idea of trying to make the language model a true probability distribution 😌
- No discounting of higher-order probabilities
- If a higher-order n-gram has a zero count, simply backoff to a lowerorder n-gram, weighted by a fixed weight

•
$$S(w_i | w_{i-k+1}^{i-1}) = \begin{cases} \frac{c(w_{i-k+1}^i)}{c(w_{i-k+1}^{i-1})} & \text{if } c(w_{i-k+1}^i) > 0\\ \lambda S(w_i | w_{i-k+2}^{i-1}) & \text{otherwise} \end{cases}$$

• Terminates in the unigram, which has the probability:

Generally, 0.4 works well (Brants et al., 2007)

Summary: Language Modeling

- Language models are statistical models that predict the likelihood of word or character sequences in a language
- N-gram language models are based on n-gram frequencies
 - **N-Gram:** An *n*-length sequence of words or characters
- Maximum likelihood estimation is often used to compute n-gram probabilities
- Language models can be evaluated intrinsically using perplexity
- Unknown words and words in unseen contexts need to be handled to avoid issues stemming from n-gram sparsity
- N-gram language models can be improved using a variety of **smoothing techniques**
 - Laplace smoothing
 - Add-K smoothing
 - Interpolation
 - Katz backoff
 - Kneser-Ney smoothing
 - Stupid backoff